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Abstract

The present study examines the spatial-temporal regime of the mean monthly tem-
perature (MMT) and monthly precipitation (MPT) anomalies over the Russian Far East
and Eastern Siberia for the period 1949-2003. The original data were analyzed spa-
tially by means of complex principal component analysis and temporally by means of
the maximum entropy method and traditional Fourier spectral analysis. The interan-
nual variability in these anomalies can be represented by the single dominant modes.
These dominant modes oscillate with periods of about 2-3yr and 6-8 yr that are ac-
companied by statistically significant changes in such monthly teleconnection indices,
as the Arctic and North Pacific Oscillations.

1 Introduction

The variations of surface-air temperature and precipitation are of vital social and eco-
nomic importance (Watson et al., 2001). However, there is uncertainty in the question
how climatic systems evolve. The potential reliability of climate models can be tested
by comparing simulated climate variability with observed. So, the study of observed
climate variability may be summarized as a climate model verification problem (Majda
et al., 2001).

The physical processes that are responsible for climate evolution are fundamentally
non-linear. The most widespread linear correlation techniques are unable to clearly
recognize the climatic signal in the short and noisy data series. Methods based on
modern spectral analysis techniques are relatively free from these disadvantages.
Hancock and Yarger (1979) used classic Fourier spectral analysis to investigate the
relationship between the Zurich annual sunspot number and state monthly mean tem-
perature and precipitation for the contiguous United States. Schonwiese (1987) applied
the cross-spectral analysis to provide physical reasons for periodic signals included in
temperature series. Benner (1999) measured the coherence by cross-spectral anal-
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ysis to explore the connections between the prominent oscillations in temperature in
central England and solar activity.

At present the tandem “spectral analysis + principal component analysis” is more
preferable than other methods (Ghil and Yiou, 1996). Suitable significance criteria for
spectral and principal component analysis are more developed as distinct from wavelet
analysis.

In this work the complex research of the spatial-temporal regime of the mean monthly
temperature (MMT) and monthly precipitation (MPT) anomalies is carried out for the
Russian Eastern Siberia and Russian Far East for the period 1949-2003.

2 Data

At present the gridded precipitation and temperature data are available from Na-
tional Centers for Environmental Prediction—National Center for Atmospheric Research
(NCEP-NCAR) or the web-site (http://www.cru.uea.ac.uk/~mikeh/) at the University of
East Anglia (Hulme and Jones, 1993). However, it is well known that the interpola-
tion of data, especially precipitation, from individual station locations to a regular grid
proved to be critical (White, 2000), and, therefore, we used the stations data only.

Time series of monthly precipitation and monthly mean temperatures are determined
by 56 stations around Eastern Siberia and the Far East (Fig. 1) approximately be-
tween 41°N-60° N and 100° E-144° E. Each 55-year series begins in 1949 and ends
in 2003. Data series were obtained from the Department of Long-Term Weather
Forecast (Far East Regional Hydrometeorological Research Institute, Vladivostok,
http://www.hydromet.com).

From studies (Barnston and Livizey, 1987; King et al., 1998; Thompson and Wal-
lace, 2000) we know that the different teleconnection indices can reflect the major part
of multi-scale variability of the atmospheric dynamics. After that, many investigators
showed that variations in the teleconnection indices involve surface air temperature
and precipitation (Thompson et al., 2000; Cavazos, 2000; Rodriguez-Puebla et al.,

1917

HESSD
3, 1915-1942, 2006

Longterm variability
and its links to
teleconnection

indices

V. V. Krokhin and
W. M. J. Luxemburg

|

EG

c


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/1915/2006/hessd-3-1915-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/1915/2006/hessd-3-1915-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html
http://www.cru.uea.ac.uk/~mikeh/
http://www.hydromet.com

10

15

20

25

2001). In the present work, we approximated the East Asian monsoon activity via cir-
culation teleconnection indices, i.e. the North-Pacific (NP) index and Arctic Oscillation
(AO) index. These teleconnection circulation indices are distributed by NCEP-NCAR
(Bell and Halpert, 1995).

The North-Pacific Oscillation is a decennial-scale mode, that is, the North-Pacific
index is the leading mode of October—March sea surface temperature variability pole-
ward of 20° N (Gershunov and Barnett, 1998; Biondi et al., 2001).

The Arctic Oscillation index is constructed by projecting 1000 mb height anomalies
poleward of 20° N onto the loading pattern of the AO. The loading pattern of the AO is
defined as the leading mode of classic principal component analysis of monthly mean
1000 gPa height during 1949—-2003 period.

We used the technique of data preparation described in Yuan and Martinson (2000).
The precipitation and temperature anomaly time series, i.e. after removing the seasonal
cycle, contained inter-annual and longer variability as well as linear trends. Then we
removed any linear trend at every station point.

It is well known that monthly precipitation time series do not have a Gaussian function
distribution, so a square root transformation was applied to the data (Krokhin, 2000).

3 Methods

The complex principal component analysis (CPCA), maximum entropy method (MEM)
and traditional Fourier cross-spectral analysis techniques have been used to studying
traveling phenomena in the anomaly time series and their connectivity with different
teleconnection indices.

The anomaly time series is affected by strong spatial-temporal (spectra-like) noise
and locally quasi “errata” values. Fortunately, the temporal variability of anomaly time
series was found spatially coherent at scales larger than the spatial noise (Genthon et
al., 2003).
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We used complex time series analysis which allows decomposing space-time sig-
nals into different modes when the variance is spread over a number of frequencies.
The complex principal component analysis is a method which allows introduction of a
temporal dimension in the classical principal component analysis for studying travel-
ing waves in the atmosphere (Horel, 1984; Davis et al., 1991). The complex principal
component analysis method consists of transforming a spatial-temporal data set into a
complex signal. In the study this was done using Hilbert transform of real time series
computed for instance using the time-domain filtering Herrmann’s technique (1969).
The variance can be decomposed into different modes, as for a classical component
analysis, but the modes are no longer associated with only static variability but with a
dynamic one, taking into account the time evolution on the variability.

Further, the spatial patterns of only two dominant complex principal components
were complex rotated orthogonally by the Varimax method (Kaiser, 1958; Bloomfield
and Davis, 1994). The orthogonal rotation solution is “. . . less dependent on the domain
of the analysis” (Horel, 1984, p. 1665).

For carrying out the CPCA we used the author’s package based on IMSL programs
(International Mathematical and Statistical Library, 1982).

A main limitation on the performance of complex empirical orthogonal function anal-
ysis is that modal spatial patterns from a time domain analysis of wide-banded signals
should be interpreted cautiously (Merrifield and Guza, 1990). Therefore, the anomaly
time series were filtered by a Butterworth’s low-pass symmetric filter (Rabiner and
Gold, 1975) to eliminate noise with periods less than 1 year prior to the variability anal-
ysis. In order to minimize Gibbs’s end effects during spectral analysis the first and last
10% time steps of time series were tapered using a portion of a cosine bell distribution
(Bloomfield, 2000).

Multivariate analysis methods, especially the complex empirical orthogonal function
method, assume the data to be complete. When there are gaps the resulting complex
correlation matrix shall be ill conditioned, it will be even not a positive definite and the
numeric procedure will give several small negative eigenvalues. A way of overcoming
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this problem is to fill the missing data using an adequate method. In the study we
recovered missing data with the help of simulation techniques based on Bayesian in-
ference for multivariate data with missing values. The computational routine NORM is
described by Schafer (1997). NORM (version 2.02) is a Windows 95/98/NT program
for multiple imputations of incomplete multivariate data. The program is available on
personal Schafer’s site (http://www.stat.psu.edu/~jls/).

Although a CPCA is a very powerful method for identifying waves or modes, an ad-
vantage of spectral analysis is that the techniques for determining the statistical signif-
icance of the results are better developed. In the present paper, the maximum entropy
method and the traditional cross-spectral analysis have been used to find connections
between anomaly time series and some circulation indices. Maximum entropy spectral
analysis is a technique that can be used for relatively short and noisy time series when
one needs more spectral resolution than provided by classic Fourier spectral analy-
sis (Press et al., 1992). The maximum entropy method will tend to strongly localize
spectral peaks. In practice, we used it in conjunction with traditional Fourier spectral
analysis (Bloomfield, 2000).

Cross-spectral analysis of coherence was obtained by Fast Fourier Transform us-
ing the Welch’s periodogram technique (Welch, 1967; Jenkins and Watts, 1968). Co-
herence can be regarded as evidence against meteorological distinctness (Brillinger,
1981).

In order to establish the significance of periodic signal components in the analyzed
time series in the presence of white noise, Siegel’s test has been used. Siegel’s test
is the most powerful test against many periodicities, i.e., for cases in which up to three
periodic components are present in a time series (Percival and Walden, 1993).
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4 Complex principal analysis on precipitation and temperature anomaly time
series

In an attempt to identify coherent spatial/temporal substructure in the anomaly time
series, a CPCA was applied to identify traveling and standing waves (Horel, 1984).

Earlier, Salinger (1980a, b), Domroes et al. (1998), Varlamov et al. (1998),
Rodrigues-Puebla et al. (2001) established that time series of temperature and pre-
cipitation anomalies in the different geographical regions could be represented with
relatively few empirical orthogonal function modes. Later, White and Cherry (1999)
found out that interannual variability in temperature and precipitation time series in
New Zealand can be represented by a single dominant mode.

Here, we also demonstrate that interannual variability in Eastern Siberian and Far
Eastern time series of temperature and precipitation anomalies can be represented by
the single or two dominant modes.

CPCA of temperature anomalies yields the first mode explaining 55% of the total
low-pass interannual variance. The complex empirical orthogonal functions are pre-
sented here in terms of its amplitude (arrow length) (Fig. 2a) and phase (arrow di-
rection) (Fig. 2b). The vector pointing upwards (downwards) indicates that real and
imaginary eigenvector components are in-phase (out-of-phase), a vector pointing to
the right (left) indicates that the real part lags the imaginary on /4 of a period. For
example, the clockwise vector rotation from west to east indicates that the wave travels
eastward (Horel, 1984; Tourre et al., 1999). In our case, the phase angle over our
pattern remains quasi-constant, indicating that the temperature anomalies evolution is
stationary. So, the temperature variability over our domain can be represented by a
standing wave component.

However, “............ precipitation variability is relatively elusive ... ” (Genthon et
al., 2003; citation from “Interannual Antarctic tropospheric circulation and precipita-
tion variability”, 2003). Mode discrimination and sorting through CPCA is thus more
difficult and unreliable for precipitation than for temperature. Therefore we analyzed
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the first mode only. The remaining part of the total interannual variance is too incon-
sistent and noisy to be further analyzed with confidence. The dominant mode of the
precipitation anomalies pattern (Figs. 3a, b) represents 22% of the total low-pass in-
terannual variance. The relative parity among the weights in the real and imaginary
components of the precipitation dominant mode (not shown) indicates that precipita-
tion anomalies have a greater propagational character associated with them than do
temperature anomalies. In other words, this mode is a superposition of progressive
and standing waves. Some eastward and equator directed spreading of the climatic
signal occurs over our domain. This is shown by a clockwise rotation of vectors over
Eastern Siberia and the Far East. The eastward and equator directed propagation is
consistent with the direction of propagation in atmospheric anomalies associated with
the Arctic Circumpolar Wave. This is true for the middle latitudes in the Southern and
Northern Hemispheres both (White and Cherry, 1999; White, 2000; Ambaum et al.,
2001).

The real components of the temperature and precipitation anomaly time series for
dominant complex principal modes lags the imaginary components by approximately
2-3yr (~23-34 months) with coherence levels 0.91 and 0.87, respectively (Fig. 4).
Real and imaginary component time series are orthogonal to each other (not shown),
however these are not Hilbert transforms to each other (Horel, 1984). Note, that White
and Cherry (1999) recommended to use a temporal lag between real and imaginary
components in statistical climate prediction models.

The dominant complex principal component temporal phase for the precipitation and
temperature anomalies (here not shown) decreases with time for the most part of our
time domain but it increases in some intermediate periods. On the one side this can
be explained by the fact that analyzed time series consist of anomalies of varied time
scales. On the other hand, if the phase increases or decreases monotonically from 0 to
21 over T, it can be inferred that a certain cyclicity exists in the anomalies time series
(Venegas et al., 1998; Tourre et al., 1999). We shall demonstrate below that this may
be explained when significant periodic signal components in the temporal coefficients
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of complex principal modes of analyzed time series exist.

5 Cross-spectral analysis of the dominant complex principal modes of the tem-
perature and precipitation anomaly time series and the teleconnection in-
dices

Earlier, Rodriguez-Puebla et al. (2001) carried out the cross-spectral analysis of the
dominant ordinal principal modes of the precipitation over the Iberian peninsula and
North Atlantic Oscillation index. In this paper it was emphasized, that “. . . when two time
series have significant peaks at particular frequencies and the peaks are coherent, the
local and global information constitutes a true climate signal” (citation from: Rodriguez-
Puebla et al., 2001). In this study we used the approach of the paper (Rodriguez-
Puebla et al., 2001), to analyze the dominant complex principal modes of the anomaly
time series and its relationship to the North-Pacific index and Arctic Oscillation index.
The dominant complex principal modes of temperature and precipitation anomalies
reveal two significant spectral peaks with the period of ~6-8yr (72—96 mo) and the
quasi-biennial oscillation with the period of 2-3 yr (#23-34 mo) (Figs. 5a, 6a, 7a). The
coherence between the dominant complex principal modes of temperatures and pre-
cipitation anomalies and the Arctic and North Pacific Oscillations suggest, in general,
that the presence of these oscillations at 6—-8 yr and 2—3 yr must be signals of variations
because they are coherent at about 0.21 squared correlation. The critical value for co-
herency estimates is 0.16 at 95% significance level (Brillinger, 1981) (Figs. 5b, 6b, 7b).
Itis remarkable, that, interconnections are more stable for the dominant complex princi-
pal mode of precipitation anomalies, than temperature anomalies (the variant “complex
principal mode of precipitation anomalies and arctic oscillation” is not shown).
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6 Discussion

The results in the present study possibly suggest that the Far Eastern mean monthly
temperature and monthly precipitation anomaly time series can be associated with the
quasi-biennial oscillation and are coherent with the stratospheric extra-tropical quasi-
biennial oscillation and “El Nino-Southern Oscillation”. The Southern Oscillation is the
strongest climatic signal in the tropics. El Nino and La Nina are opposite phases of the
“El Nino-Southern Oscillation” cycle (Troup, 1965; Philander, 1990). The stratospheric
extra-tropical quasi-biennial oscillation is most easily identified as an alternation of de-
scending westerly and easterly wind regimes in the lower stratosphere with a period
varying from 22 to 34 months (Reed et al., 1961).

Earlier, the analogous results were found in surface temperature over the United
States (Rasmusson et al., 1981), in annual precipitation over Far East (Eremin, 1982),
for African rainfall time series (Ropelewski and Halpert, 1987), for Indian rainfall time
series (Mooley and Parthasarathy, 1984). Shen and Lau (1995) found a quasi-biennial
oscillation mode in East Asian summer monsoon rainfall. Lu (2003) found the bien-
nial oscillation signal in monthly station pressure, temperature and precipitation data
in Taiwan. A midlatitude quasi-biennial oscillation was clearly identified by an in sur-
face level pressure field over the northern hemisphere (Trenberth, 1975; Trenberth and
Shin, 1984). It was found that the quasi-biennial oscillation of sea level pressure corre-
sponds to the fluctuations of the midlatitude wavenumber-3 planetary wave. Gong and
Ho (2003) showed that Arctic Circumpolar Wave statistically significant influences upon
East Asian Monsoon by way of north-south movement of the middle latitude zonal jet
over East Asia.

The decadal oscillation (~8yr) is less revealed than the quasi-biennial oscillation.
Nevertheless, the existence of this oscillation is also confirmed by many investigators.
For the European region, e.g., Rodriguez-Puebla et al. (2001) registered the oscillation
with the period of 8-yr between the North Atlantic Oscillation Index and winter precipi-
tation over the Iberian Peninsula.
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For our geographical domain, Hanawa (1995) found that the Sverdrup transport and
Far East Zonal Index fluctuate with the 6-8 yr. periodicity over the Northwest Pacific.
Tourre et al. (1999) emphasized 6-8yr. periodicity in surface level pressure and sea
surface temperature anomalies over North Pacific. Ponomarev et al. (1999) also esti-
mated the oscillation period of sea surface temperature anomalies over North Pacific
as 6-8yr. Wang et al. (2004) examined variability of temperature and precipitation
over China and found that quasi-biennial oscillations are stronger in East China, than
in West China.

The anomalies in atmospheric pressure, temperature and rainfall have similar sta-
tistically significant periodicity on the different interannual timescales in different East
Asian regions. The present study does not pursue the purpose to analyze the physical
nature of these interrelations. Different assumptions were suggested by many investi-
gators. For example, Nakamura (2002) accentuated the main role of the storm activity
for the East Asian monsoon intensity. We shall note only, that it is necessary to search
for possible explanations, apparently, in the nature of climatic fluctuations, in the so-
called mechanism of long time memory in climatic system (von Storch and Zweirs,
1999). Research of the mechanism of long time memory is the further basis for climate
modeling and, subsequently, forecasting.

7 Conclusions

We examined the spatial-temporal regime of the mean monthly temperature and
monthly precipitation totals anomalies over Russian Eastern Siberia and the Russian
Far East for the period 1949-2003. We found that interannual variability in Eastern
Siberian and Far Eastern time series of temperature and precipitation anomalies can
be represented by the single or two dominant complex principal modes. It has been
suggested that these modes have similar statistically significant periodicity on the dif-
ferent interannual timescales in different East Asian regions. Whether these modes
are likely to be physically important in the earth’s atmosphere is an open question,
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however.

Thus, the further studies of climate of Eastern Siberia and the Far East must be
closely joined with studies of the West Pacific monsoon, El Nino—Southern Oscilla-
tion, surface air temperature and precipitation variations in the western Pacific and
surrounding oceans, the tropospheric/stratospheric biennial oscillation, and the South
Asian Monsoon.
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1. Djikimda 15. Kjahta 29. Im. Poliny 43. Ternej
Osipenko

2. Bodajbo 16. Menza 30. Hularin 44. Turij Rog

3. Bratsk 17. Borzja 31. Blagoveshhensk 45. Pogranichnyj

4. Ust-Nukja 18. Aldan 32. Chekunda 46. Astrahanka

5. Chulman 19. Uchur 33. Sutur 47. Spassk-Dal'nij

6. Nizhne-Angarsk 20. Ust-Yudoma 34. Komsomol'sk-na- 48. Roshhino
Amure

7. Kalakan 21. Ohotsk 35. Tumnin 49. Bogopol’

8. Zilovo 22. Chulbu 36. Ekaterino- 50. Rudnaja Pristan'
Nikol'skoe

9. Mogocha 23. Nelkan 37. Habarovsk 51. Vladivostok

10. Skovorodino 24. Ayan 38. Gvasugi 52. Timirjazevskij

11. Irkutsk 25. Chumikan 39. Zolotoy Cape 53. Pos'et

12. Chita 26. Zeya 40. Ohotnichij 54. Anuchino

13. Sretensk 27. Ekimchan 41. Sosunovo 55. Preobrazhenie

14. Ulan-Ude 28. Nikolaevsk-na- 42. Dal'nerechensk 56. Margaritovo

Amure

Fig. 1. The locations of 56 stations where temperature and precipitation was measured over
Eastern Siberia and the Far East from 1949 to 2003.
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Fig. 2a. First complex principal pattern (55% of total variance) of the Mean Monthly Tempera-

ture anomalies.
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Fig. 2b. Spatial phase (in degrees) of the complex principal component of the Mean Monthly

Temperature anomalies.
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Fig. 3b. Spatial phase (in degrees) of the complex principal component of the Monthly Precip-

itation anomalies.
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Fig. 4. Coherence between the real and imaginary parts of the temporal coefficients of the
dominant principal components for the Mean Monthly Temperatures and Monthly Precipitation
time series.
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Fig. 5a. Spectra of the dominant complex principal mode of Mean Monthly Temperatures and

the NP Oscillation Index.
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Fig. 6a. Spectra of the dominant complex principal mode of the Monthly Precipitation and the

NP Oscillation Index.
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Fig. 7a. Spectra of the dominant complex principal mode of the Monthly Precipitation and the

AO Index.
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Fig. 7b. Coherence between the dominant complex principal mode of the Monthly Precipitation

and the AO Index.
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